UrbanComp

城市六感知的预训练深度学习模型及Python代码下载

基于“人机对抗生成照片-感知数据集”(可参考文章),我们采用武汉地区的街景打分数据训练了六种感知(美观、无聊、压抑、活力、安全和富裕)的深度网络模型,免费提供给各位老师和同学们用于科学研究。感谢中国地质大学(武汉)地理与信息工程学院2017级软件工程系的王宇同学分享。相关参考文献和下载地址请见本文末

BaiduStreetViewSpider: 多角度百度街景图像抓取爬虫源码(Python)

百度街景爬虫  该项目用于根据指定的wgs84经纬度坐标获取对应位置的百度地图的街景图像。内容该文件夹主要包含一个用于获取街景的脚本文件和一个输出目录。baiduStreetViewSpider.py:该脚本为获取街景的主要程序,输入为存有wgs84坐标系下经纬度信息的csv文件。dir文件夹:存有

关于延期举办SpatialDI 2022的通知

关于延期举办SpatialDI 2022的通知 致尊敬的各位参会代表: 近期全国多地出现新冠疫情本土确诊病例,诸多省市(区)陆续出台了最新的疫情防控政策和严格的旅行禁令。为切实保障参会代表人身安全,配合武汉相关防疫部门贯彻落实疫情防控工作部署,经大会组委会和分会主席团审慎共同研究决定,将原定于2022年4月14-16日在武汉举办的“第三届中国空间数据智能学术会议(SpatialDI 2022)” ,延期至2022年6月8-10日举行,相关参会形式和内容将另行通知。 已经完成注册缴费的代表,请您保留好注册及缴费信息,相关信息对延期后会议依然有效。组委会将按照相关规定和财务管理流程妥善处理相关变更事宜,因会议延期给参会代表带来不便,我们深表歉意,敬请谅解! 我们将充分做好本次大会延期召开的各项工作,期待在疫情得到有效控制之后,各位专家、学者继续支持本次会议的举办。 会务组联系人: 范明 15927333030 李应争 13349838503 SpatialDI 2022会务组 2022年4月6日

VecLI v2.6.0 (3.0.0 beta):基于真实地块的矢量景观指数计算与分析系统软件(PC端)

介绍在VecLI2.0发布后,我们发现软件仍存在许多的不足,比如计算景观指数时必须执行地块合并功能导致计算效率低下。然而,并非所有的矢量用地数据都存在景观破碎化问题,对地块破碎问题逐一检查浪费了大量时间。为此,在V2.5版本中,我们将地块合并和景观指数计算分成两个模块,进一步提高矢量景观指数计算速度

Estimating urban functional distributions with semantics preserved POI embedding

We present a novel approach for estimating the proportional distributions of function types (i.e. functional distributions) in an urban area through learning semantics preserved embeddings of points-of-interest (POIs). Specifically, we represent POIs as low-dimensional vectors to capture (1) the spatial co-occurrence patterns of POIs and (2) the semantics conveyed by the POI hierarchical categories (i.e. categorical semantics). The proposed approach utilizes spatially explicit random walks in a POI network to learn spatial co-occurrence patterns, and a manifold learning algorithm to capture categorical semantics. The learned POI vector embeddings are then aggregated to generate regional embeddings with long short-term memory (LSTM) and attention mechanisms, to take account of the different levels of importance among the POIs in a region. Finally, a multilayer perceptron (MLP) maps regional embeddings to functional distributions. A case study in Xiamen Island, China implements and evaluates the proposed approach. The results indicate that our approach outperforms several competitive baseline models in all evaluation measures, and yields a relatively high consistency between the estimation and ground truth. In addition, a comprehensive error analysis unveils several intrinsic limitations of POI data for this task, e.g. ambiguous linkage between POIs and functions.

UrbanComp

切换主题 | SCHEME TOOL